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Controlling Robots Under Uncertainties
• RL policies excel at robustly navigating uncertain environments, 

but don’t explicitly quantify uncertainty.

• This can be a weakness when faced with sensing and estimation 

uncertainties at deployment.

• Incorporating uncertainty covariances into policy observations is 

challenging due to high dimensionality.

• Instead of adding hundreds of observation variables or retraining 

with additional domain randomization, we augment a baseline RL 

policy with sensitivity-aware chance-constraints, following [2].

Sensitivity-Aware Observation Augmentation
• Given a rollout of a baseline policy, sensitivity analysis [1] propagates 

uncertainty to form a “tube” of future states (Figure 1).

• This tube can be used to compute the worst-case future state 

deviation in the direction of the obstacles (r).

• We then modify the policy observation of the obstacle to account for 

the future state deviation.

• The ensuing policy will produce a safer motion that accounts for the 

effect of uncertainties.

Figure 1: In order to be effective in real-world environments, learned policies must be able to handle estimation uncertainties. Obstacle augmentation (OA) leverages model-

based sensitivity analysis to form a tube of future state deviations. With this information, the observation of the policy is modified to represent the ”robustified” obstacle 

representation. This method allows us to improve policy robustness without increasing observation size or retraining.
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Gate Successfully Passed: 

Baseline: 21/100

Observation Augmentation: 14/100

Gate Not Passed: 

Baseline: 60/100

Observation Augmentation: 75/100

Collision: 

Baseline: 19/100

Observation Augmentation: 11/100

Figure 2: Histograms of 100 random trials for baseline policy and observation augmentation method. The baseline policy is unsafe when the gate distance is in a range 

where uncertainties in state and parameters can perturb the robot’s trajectory so much that it results in a collision. The baseline policy experiences 19 obstacle failures 

(shown in red). Blue bars indicate when a robot does not pass through the gate but remains safe, and green bars are when the robot successfully passes through the gate. 

Using observation augmentation, the policy is more conservative, but more robust to uncertainties, experiencing only 11 collisions.
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3) Augment observation 

Algorithm Outline (Figure 1)
1. Rollout baseline policy

2. Compute tube of future states

3. Augment observation based on worst-case future state deviation

4. Query modified OA policy

Preliminary Results
• 100 trials of a gate passing task (Figure 1) were conducted with 

state, parameter, and obstacle estimation uncertainty drawn from 

an unscented Kalman filter.

• A baseline policy trained with PPO was compared to the same policy 

modified with observation augmentation.
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