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Figure 1: In order to be effective in real-world environments, learned policies must be able to handle estimation uncertainties. Obstacle augmentation (OA) leverages model-
based sensitivity analysis to form a tube of future state deviations. \With this information, the observation of the policy Is modified to represent the "robustified” obstacle
representation. This method allows us to improve policy robustness without increasing observation size or retraining.

Controlling Robots Under Uncertainties Sensitivity-Aware Observation Augmentation

. L policies excel at robustly navigating uncertain environments,  (iven a rollout of a baseline policy, sensitivity analysis [1] propagates
out don’t explicitly quantify uncertainty. uncertainty to form a "tube” of future states [Figure 1).

* This can be a weakness when faced with sensing and estimation * This tube can be used to compute the worst-case future state
uncertainties at deployment. deviation Iin the direction of the obstacles (r).

* Incorporating uncertainty covariances into policy observations Is * \We then modity the policy observation of the obstacle to account for
challenging due to high dimensionality. the future state deviation.

* Instead of adding hundreds of observation variables or retraining * The ensuing policy will produce a safer motion that accounts for the
with additional domain randomization, we augment a baseline RL effect of uncertainties.

policy with sensitivity-aware chance-constraints, following [2]. Preliminar'y Results

Algorithm Outline [Figur‘e 1) * 100 trials of a gate passing task [Figure 1] were conducted with
1. Rollout baseline policy state, parameter, and obstacle estimation uncertainty drawn from
2. (GCompute tube of future states an unscented Kalman filter.
3. Augment observation based on worst-case future state deviation * A baseline policy trained with PPO was compared to the same paolicy
4.  (Query modified OA policy modified with observation augmentation.
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Figure 2: Histograms of 100 random trials for baseline policy and observation augmentation method. The baseline policy Is unsafe when the gate distance Is in a range
where uncertainties in state and parameters can perturb the robot’'s trajectory so much that it results in a collision. The baseline policy experiences 13 obstacle failures
(shown In red). Blue bars indicate when a robot does not pass through the gate but remains safe, and green bars are when the robot successfully passes through the gate.
Using observation augmentation, the policy Is more conservative, but more robust to uncertainties, experiencing only 11 collisions.
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